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ABSTRACT

This paper deals with Bayesian and non-Bayesian methods for estimating parameters of the bivariate Pareto (BP)
distribution based on censored samples are considered with shape parameters A and known scale parameter .
The maximum likelihood estimators MLE of the unknown parameters are derived. The Bayes estimators are
obtained with respect to the squared error loss function and the prior distributions allow for prior dependence
among the components of the parameter vector. .Posterior distributions for parameters of interest are derived and
their properties are described. If the scale parameter is known, the Bayes estimators of the unknown parameters
can be obtained in explicit forms under the assumptions of independent priors. An extensive computer
simulation is used to compare the performance of the proposed estimators using MathCAD (14).

Keywords- bivariate Pareto distribution, censored samples, importance sampling, maximum likelihood
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I.  Introduction
The censoring time (T) is assumed to be
independent of the life times (X, Y) of the two
components. The bivariate density function of (X, Y)

is denoted by f, (xy). The considered situation

occurs for example in medical studies of paired
organs like kidneys, eyes, lungs, or any other paired
organs of an individual as a two components system
which works under interdependency circumstances.
Failure of an individual may censor failure of either
one of the paired organ or both. This scheme of
censoring is right censoring.

There is similar situation in engineering science
whenever sub-systems are considered having two
components with life times (X, Y) being independent
of the life time (T) of the entire system. However,
failure of the main system may censor failure of
either one component or both. [See, Hanagal and
Ahmadi [1]]

Censoring may also occur in other ways. Patients
may be lost to follow up during the study, the patient
may decide to move elsewhere therefore the
experimenter may not follow him or her again, or the
patients may become non-cooperative which is due to
some bad side effects of the therapy. Such cases are
called withdrawal from the study. A patient with
censored data contributes valuable information and
should therefore not be omitted from the analysis.
Hanagal [2, 3] derived maximum likelihood
estimators of the parameters for the case of univariate
right censoring.

The rest of the paper is organized as follows. In
Section 2, the bivariate Pareto distribution is

introduced, the estimation of bivariate Pareto
distribution based on censored samples is proposed in
Section 3. Section 4 discussed the Bayesian
parameters estimation for Pareto distribution based
on censored samples. The maximum likelihood
estimates (MLEs) of the parameters of the bivariate
Pareto of Marshall-Olkin are obtained based on
censored samples in Section 5. Finally, simulation
results and conclusions are laid out in Section 6.

Il.  The bivariate Pareto distribution
The Pareto distribution was first proposed as a
model for the distribution of incomes, it is also used
as a model for the distribution of city populations
within a given area. [See,Johnson andKotz [4]].
The probability distribution function and the

cumulative  distribution functions are defined
respectively by the  following  functions:
-A-1
f(x,ﬂ,ﬂ):ﬂ(xj X>f AB>0
BB 1)
-2
F(X,ﬂ,ﬂ):l—[xj ,X>ﬁ ,l,ﬂ>0
P 0

Veenus and Nair[5] proposed a bivariate Pareto (BP)
distribution with many interesting properties like
marginal Pareto, bivariate loss of memory property

and they proposed the survival function for X, y >0
, 4, >0,4, >0and4; >0 as follows:

g N ~7s
Fon-[5] (5] [*%52) - wrpn©

Where
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A=A +A,+4
Also they proposed the joint probability density
function fx Y (X, Y) of X and Y as follows:

W(;jw[;j(ww if f<x<y<w
iy N
fyy (X y)= (4;/13)12(;) (;j if f<y<x<ow
ﬁ[;j if  f<x=y<w
(4)
Where
A=A +A,+4

I11.  Estimation for BP Distribution Based
on Censored Samples
The univariate random censoring scheme given
by Hanagal [2] is used for estimating the bivariate
life time distribution, which takes into account that
individuals do not enter at the same time the study
and a withdrawal of an individual will censor both
life times of the components which in the sequel will
be called implants, because the model was developed
and applied in the framework of teeth implants for
upper and lower jaws.
Suppose that there are n independent pairs of
implants under study, where the i"pair of implants

have life times (Xi, yi) and a censoring time (t; ).
Let the censored random life of the i"" pair be denoted
by (Xi 1 Yi ) :

Then (Xi »Yi ) are defined as follows:

(6, y,) i max(x;, y;)<t,
(x,.t,) if X <t <y,

O 31)= (t.y;) if Yi <t <X ©
(ti’ti) if min(xi1yi)>ti

There are six different types of events which might
occur with respect to (Xi, yi),i =1---,n. These are
the following:

Type 1. X, <y, <t

Type 2. y, <x, <t

Type 3. x; =y, <t;

Type 4: x, <t, <y

Type5: y, <t; <X

Type 6:t, < min(x,,y,)

Let ny, ny, N3, N4, N and ng be the numbers of
observations representing the differenttypes of events

withn=n, +N, +N; +N, +N; +Ng.  Then

o g s~ w bR

the likelihood function L for a
((Xl, Vi) (X, yn))is given as follows:

Lo (1"-] (¢, Y08 (t.)j[f‘] L0 )8 (tJJ[ﬁ B0 y')G(t')]
[1‘[ f4(xi,ti)9(ti)j(1n'5[ A yi)g(ti)J[]_n's[ F(ti,ti)g(ti)) ©)

sample

Where
G(t,)=P(T, > max(x,,y,)) _ g 0lmaxt.y)-s]
where max(x;,y;)>p , >0

~4-1 (Ao +2)-1
PR SALANT

g\ B
fL(x0¥) = W(Xi]—(ﬂm(yij%_l
g s ;

A (x
fs i:_s_I
o) ﬂ(ﬁj

. P(x< X <X+ AX|]y >t)P(Y >t
.ot =lim ( A ‘y ) ( )
Ax—>0 X

A (x Y )
_/32(,8) (ﬂj

. Ply <Y <y+Ayx>t)P(x >t
st y)=lim (y Y AY‘ ) ( )
Ay—0 y

/11 " —A,-1 t (M +43)
-5

F®.t)=P(X, >t,Y >t‘):%[%j

Then the log - likelihood function L for a sample
((le yl),"',(Xn, yn))is given by:

3

=Yl 050 Sl 601 nltn, 060

i=1

+iln[f4(xixti)g(ti)]+iln[f5(ti,yi)g(ti)]+iln[f(ti,ti)g(ti)]
:iln[fl(xi,yi)]+_n§j:|n[fz(xi,yi)]+§|n[f3(xi,yi)]

+_nZA:In[f4(xi ,ti)]+iln[f5(ti , yi)]+_nZG:In[lf(ti )]

+ 2 mE)]+ Y n[g(t)] %
Where
Zln[(?(ti)]: (n,+n,+n)06 - ezmax( X, V)

> In[g(t)]=(n, +ng +ng) IN(0) + (n, +ng +1,)08 -t

ieB ieB
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(2, +4;) + () + (2) n(B)) -

Zln X, ,)]= (/11+1)ilnxi—(,12+/13+1)ilnyi

"21 ()= (2 + )+ () ()n(B)-
nZ [, 06, y)]= (nC) + (D I(A) - (4D I
len[n(xi,ti)]=n4(ln(4)+(z)ln(ﬁ))—

Zl[ (t,3))=(n(7)+ (1)n

(4 +1)iln X, — (4, +/I3)ilnti

R IR

ZIn[F t,.t)]=n,(A)(IN(B)) - (z)Zlnt

Suppose the scale parameter /3 is known then,
InL = (n, +n;)In(4,)+(n +n,)In(4)+n, In(4, + 4;,) +n; In(4,)

+n, In(’% +ﬂ*3) +(n4 +ng + ne)ln(g) _ﬂ’lkl _/q'zkz _/13k3 _HKA
(X, yt) ®)
Where

\P(xi,yi,ti):ilnxi+nzllnyi+nZzInxi+ilnyi+ilnxi+nzdlnxi+nilnyi
n Ny
Zlnx +ZInx +Zlnx +Zlnx +Zlnt +Zlnt ~nin(p
i=1 i=1

3 ny,+2|n Y, +2In y,+ZInt +2Int —-nin(p)

K, :Zln Y, +Zln X +Zln X +Zlnti +Zlnti +Zlnti -nin(p)
= |:Z max(xi ' Yi)"‘ Zti - nﬂ:|

ieA ieB

IV.  Bayesian Parameter Estimation for
BP Distribution Based on Censored

Samples
This Section deals with the Bayesian estimate of
BP estimators based on censored samples when the

scale parameter £ is known; let the same conjugate

prioron 4,4, and A, is given as follow.

7(4,) oc A7 exp(=b, 4,) r=123 (9)
and conjugate prior for @is
() o« 0% exp(—b,0) (10)

where 4,, 4,,A;and@ have independent gamma

priors.
We can rewrite the likelihood equation from equation
(8) as follow

(4 +1)i|n Y- (A +4 +1)i|n X,

=e" = ()" () (&) (o + &) (A + )"
(9)n4+n5+n5 EXp(_ ﬂlkl - ﬂzkz N ﬂsks N 9‘4)e_T(Xi )

Then

(N n Ny +Ng+]j N+, + N+, +ng—l-j Ny +Ng+n,
LOCZZ[ 1)( jzj(iz)z 5 J(ﬂl)l 4'(13)1 2 3'1(9)4 5+Ng

EXp(— Ak =2k, = 23k, _6kA) (11
The joint posterior density of 4,,4,,A;and@ will
be :

”(/11,/12:/1319@)’ [Zi[ ][ j ”1+”4+f1+l

1=0 j=0
EXp (_ [kl +b1 ]il)(ﬂz)nzmsﬂﬁj_l
EXp (_ [kz +b2 ]ﬂz) (l )n1+n2+n3+13—l—j
Exp(~[k, +b, ]2, )@)™ ™" Exp(-[k, +b, )]

then

Hlay J 01X Y) = ZZOUU ey ([l +b )

xp(-fe, +b, ] M)
Exp (‘ [kz t bz]/iz o) Exp (‘ [kA * bA]e) 12)

c = n, n.z l"a“ razj ragh‘ Fa4 (13)
lj I ay

3 ) (ky+0)™ (k, +b,)™ (kg +by)™" (K, +b,)
then
1
C= s @4
D2
1=0 j=0
Where

ay=m+n+o+l , a;=n+n+7,+],
Ay =N +N,+Ny+75,+1+ ]
anda, =N, +N; +Ng +7,

Therefore, under the  assumption  of
independence of 4;, 4,,4;and@, it is possible to

get the Bayes estimates of A, 4,,4;and@ in

closed forms, explicitly under the squared error loss
function using (12), as follows:

LN

c.a 15
k+b1§§' i a3
= S nEzca 16
k+b2|OJOIJZJ ()

Lo

DGy A7)

3
k+b3.OJO

non

chua
1=0 j=0

0= (18)
4 b4

4 4
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V.  Non Bayesian Parameter Estimation
for BP Distribution Based on
Censored Samples

This section deals with MLE of the unknown
estimators, it is well known that the closed forms of
maximum likelihood estimators of the unknown
parameters do not always exist.

From equation (8) take the derivative of the log
likelihood In L with respect to each parameter set
the partial derivatives equal to zero.

Therefore the normal equations are
olnL _(n, +n,) N n,

—k, =0 (19)
o, Lo At
ot _(*0s), M o (20)
612 ﬂz ﬂvz"'ﬂ“S
olnL n n n

__3 2 = —k; =0 (21)

=—+ +
oA, Ay A+A A+ A4
olnL n,+ng+ng
00 7

—k, =0 (22)

(23)

The likelihood equations (19), (20) and (21) may
be solved by a Newton-Raphson procedure, where
thesecond order partial derivatives of the log-
likelihood function are given by:

d’InL _ —n, (n,+n,)
o> (M+Ay A
o°’InL _o*InL _

OM0A, OA0A

o’InL _o*InL _ -n,

OhAs  Ohh (A +A)
o°’InL _o’InL _

0L0 064,

o’InL _ (n,+ny) n,
B A (L+A)
o’InL _o*InL n,

My iy (A, + A
c’)ZInL_c’)ZInL_0

oA,0 004,
o’InL  —n,

ot A
o’InL_o*InL _
o0 060,
o’InL  n,+ng+ng
002 6

The observed Fisher information matrix, | is a
(4%4) matrix, where the entries are second order
partial derivatives displayed above.

8°InL &*InL &°InL &%InL
oA, 04,04, 0M,04, 04,00
8*InL o8*IhL 8%InL &°InL
04,08, A, 01,00, 01,00
l=— 7, ) 2 2 (24)
o°InL o0°InL o0°InL o°InL
02,04, 004,  0A,° 04,00
8%InL o8%*InL o%InL o*InL
0601,  060A, 0&A,  00°

The inverse of the observed Fisher information
matrix is the observed variance-covariance matrix

ofé:(ﬂl,iz,ﬁg,é)', the MLEof the parameter
0= (2, 25,0)".

The quantity x/ﬁ(Q —0) has an asymptotic
multivariate normal distribution with mean vector
zero and observed variance-covariance matrix X.

VI.  Simulation Study
In this section, an extensive numerical
investigation using Mathcad (14) will be carried out
to estimate the parameters of the bivariate Pareto
distribution based on censored samples. The
algorithm for this estimation can be summarized in
the following steps:

e Step(l): Generate U
distribution with parameter ¢, for i=123.

; using the Pareto

e Step (2): Let X =min(u,u,) and
Y =min(u,,u,) and, therefore, (X,Y) follows a

bivariate Pareto distribution of Marshall-Olkin
type.

e Step (3): Generatet; using the two-parameter
exponential distribution with parameters @, 8
where t;s are the censoring times.

e Step (4): Generate 1000 sets of samples for two
cases with respect to the 4;S , each set consisted
of three samples with sizes n = 20, 35 and 50.

e Step (5): The estimates are obtained by taking
the mean of the 1000 maximum likelihood
estimates and the mean of the 1000 standard
deviations from the 1000 samples of size n = 20,
35, and 50. The estimates of the standard
deviation of the maximum likelihood estimates

of (4,,4,,45,6) are obtained by taking square
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root of the diagonal elements of the inverse of
the observed Fisher information matrix.

e Step (6): The Bayes estimates of 4,, 4,, 4;and

€ are computed based on squared error loss
function using equations 15, 16, 17 and 18.

e Step (7): The squared deviations are computed.

e Step (8): The estimated risk (ER) of the Bayes
estimate is obtained.

VII.  Conclusion

Simulation results for the corresponding
maximum likelihood estimates and the Bayes
estimates are summarized in Tables 1 and 2. From
these Tables, the following conclusions can be
observed on the properties of estimated parameters:
It has been observed that there is a direct proportional
relationship between MLE estimators’ values and [
values. The estimators’ values move away from the
real parameters values as long as the [ value

increases. In contrast, it has been seen that standard

errors has an indirect proportional relationship with
when £ value.

Furthermore, the results show that whenever the
sample increases the MLE estimators are more close
to real values with less standard error, which
significantly confirms the consistency property.
Referring to tables (1&2) it is obvious that MLE and
Bayesian estimators’ values are more close to the real
parameter values in case of £ =1 unlike when [ =2

and the standard error is seen less at /3 =1 rather than

at f=2.
Table (2) explores the Bayesian estimators at
different values for the prior distribution parameters (

71,75, T3,74) and (,b,b,,b,,b,)and provides the
Estimated Risk (ER) depending on the squared error
loss function. The Bayesian estimators and ER have
been observed to get affected by different values of
prior distribution and /3 .

Additionally it has been seen that Bayesian
estimators have a closed form, which it is highly
recommended to be gone through and study its
properties as a future work.

Table (1) :ML estimators and SE of the point estimate from bivariate Pareto Distribution and 1000

repetitions for different sizes of samples

Parameters 1 4, A5 0 Ay 4, A5 d
1.8 1.7 15 0.3 0.8 0.6 0.9 0.2

p n=20

1 MLE 1.731 1545 1.622 0.244 0.712 0.522 0.781 0.156
SE 0.087 0.122 0.107 0.071 0.089 0.113 0.107 0.079

2 MLE 1.423 1.332 1.243 0.211 0.624 0.456 0.641 0.149
SE 0.287 0.345 0.432 0.113 0.213 0.296 0.315 0.124
n=35

1 MLE 1.756 1.612 1.573 0.267 0.744 0.567 0.823 0.172
SE 0.066 0.109 0.092 0.054 0.073 0.104 0.098 0.065

2 MLE 1.487 1.384 1.324 0.227 0.635 0.478 0.674 0.158
SE 0.253 0.299 0.387 0.099 0.198 0.251 0.288 0.107
n=50

1 MLE 1.783 1.623 1.493 0.279 0.778 0.589 0.887 0.203
SE 0.064 0.097 0.087 0.049 0.047 0.091 0.076 0.031

2 MLE 1.557 1427 1.411 0.243 0.654 0.492 0.695 0.173
SE 0.231 0.267 0.356 0.081 0.141 0.221 0.253 0.082
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Table (2) :Bayes estimators (BE) and Estimated Risk (ER) of the point estimate from bivariate Pareto
Distribution and 1000 repetitions

Parameters A4 A Ay 0 A Ay Ay 0

1.8 1.7 1.5 0.3 0.8 0.6 0.9 0.2

B | 7,=1317,=177,=16,7,=15 b =05b, =0.4,b, =0.3,b, =0.2
1 BE 1433 1356 1.358 0.277 | 0.655  0.498 0.692 0.153
ER 0.277 0124 0.147 0.109 | 0.133  0.243 0.422 0.082
5 BE 1324 1311 1.233 0.255 | 0.627  0.466 0.647 0.147
ER 0.297 0.139 0.323 0.117 | 0.218  0.299 0.318 0.135
7,=03,7,=07,7,=0.6,7, =0.5,b, =1.5,b, =1.4,b, =1.3,b, =1.2
1 BE 1556 1633 1.532 0.282 | 0.678 0.511 0.724 0.174
ER 0.244 0111 0.123 0.091 | 0.121  0.213 0.379 0.073
2 BE 1471 1309 1.314 0.243 | 0.631  0.471 0.681 0.156
ER 0.314 0.143 0.388 0.123 | 0.188  0.249 0.287 0.101
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